
Partial Solution Set, Leon §4.1

4.1.1 For each of five transformations, we are to verify linearity and describe geometrically
the effect of the transformation. Verification is straightforward for all; a sketch might
make it easier to see what’s going on geometrically.

(a) L(x) = (−x1, x2)
T . Verifying linearity is simple: we simply show that

L(αx + y) = (−αx1 + y1, αx2 + y2)
T

= (−αx1, αx2)
T + (y1, y2)

T

= α(x1, x2)
T + (y1, y2)

T

= αL(x) + L(y).

The geometric effect is reflection across the x2-axis.

(c) Reflection across the identity line x1 = x2.

(e) Projection onto the x2-axis.

4.1.2 Let L be the linear transformation mapping R2 into itself defined by

L(x) = (x1 cos α− x2 sin α, x1 sin α + x2 cos α)T .

Express x1, x2, and L(x) in terms of polar coordinates. Describe geometrically the effect
of the linear transformation.

Solution: Rewriting in terms of polar coordinates, we have x1 = r cos θ and x2 = r sin θ,

where r =
√

x2
1 + x2

2 and θ = arctan(x2/x1). But now we have

L(x) = (x1 cos α− x2 sin α, x1 sin α + x2 cos α)T

= (r cos θ cos α− r sin θ sin α, r cos θ sin α + r sin θ cos α)T

= (r cos(θ + α), r sin(θ + α))T ,

from which we see that the original vector has been rotated counterclockwise through an
angle α.

4.1.3 Let a be a fixed nonzero vector in R2. A mapping of the form L(x) = x + a is called a
translation. Show that a translation is not a linear transformation. Illustrate geometri-
cally the effect of a translation.

Solution: The verification that L is nonlinear is easy:

L(αx + y) = αx + y + a

6= α(x + a) + (y + a)

= αL(x) + L(y).



The geometric effect is to shift the line containing x away from the origin, the distance
and direction of the shift determined by the length and direction of a. In the event that a
and x are collinear, the shifted line still passes through the origin, but the transformation
is nonetheless nonlinear, as shown by the preceding step.

4.1.6 Determine whether the following are linear transformations from R2 into R3.

(a) L(x) = (x1, x2, 1)T . This is nonlinear, since

L(αx) = (αx1, αx2, 1)T 6= (αx1, αx2, α)T = αL(x).

(c) L(x) = (x1, 0, 0)T . This is linear, since

L(αx + y) = (αx1 + y1, 0, 0)T = α(x1, 0, 0)T + (y1, 0, 0)T = αL(x) + L(y).

4.1.14 Let L be a linear operator mapping a vector space V into itself. Recursively define Ln,
by L1 = L and Ln+1(v) = L(Ln(v)) for all n ≥ 1 and all v ∈ V . Show that Ln is a linear
operator on V for each n ≥ 1.

Proof: The proof is by induction on n. By definition of Ln, the result holds for n = 1.
Let u,v ∈ R, let α be a scalar, and let k ≥ 1. Then

Lk+1(αu + v) = L(Lk((αu + v)

= L(αLk(u) + Lk(v)

= αL(Lk(u)) + L(Lk(v)

= αLk+1(v) + Lk+1(v), and we’re done. 2

4.1.15 Let L1 : U → V and L2 : V → W be linear transformations and let L = L2 ◦ L1

be the mapping defined by L(u) = L2(L1(u)) for each u ∈ U . Show that L is a linear
transformation mapping U into W .

Solution: That L is a mapping from U into W follows from elementary properties of
functions. We must show that L is linear. So let u1,u2 ∈ U , and let α be a scalar. Then

L(αu1 + u2) = L2 (L1(αu1 + u2)) (Definition of L)
= L2 (αL1(u1) + L1(u2)) (linearity of L1)
= αL2 (L1(u1)) + L2 (L1(u2)) (linearity of L2)
= αL(u1) + L(u2) (Definition of L.) 2

4.1.16 Determine the kernel and range of each of the following linear transformations from
R3 into itself.

(a) L(x) = (x3, x2, x1)
T . The kernel is the zero vector from R3, since L(x) = 0 if and

only if x1 = x2 = x3 = 0. The range is all of R3: let y = (y1, y2, y3)
T ∈ R3. Then

y = L
(
(y3, y2, y1)

T
)
, so L is an onto mapping.
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(c) L(x) = (x1, x1, x1)
T . The kernel contains all vectors of the form (0, x2, x3), and is

therefore a two-dimensional subspace of R3. The range is Span
(
(1, 1, 1)T

)
.
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